Comparative Study on the Therapeutic Potential of Neurally Differentiated Stem Cells in a Mouse Model of Multiple Sclerosis

نویسندگان

  • Natalie L. Payne
  • Guizhi Sun
  • Daniella Herszfeld
  • Pollyanna A. Tat-Goh
  • Paul J. Verma
  • Helena C. Parkington
  • Harold A. Coleman
  • Mary A. Tonta
  • Christopher Siatskas
  • Claude C. A. Bernard
چکیده

BACKGROUND Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ). METHODOLOGY/PRINCIPAL FINDINGS The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. CONCLUSION/SIGNIFICANCE Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...

متن کامل

O 9: Immunomodulatory Effects of Neural Stem Cell on Multiple Sclerosis: A Systematic Review

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating disorders of central nervous system (CNS). While the cause is unclear, the fundamental mechanism is thought to be destruction of myelin sheaths of neurons through immune system. One of the approaches being proposed in EAE therapy is neural stem cells (NSCs) trans...

متن کامل

P 152: Mesenchymal Stem Cells as a Therapeutic Target in Multiple Sclerosis

Neuroinflammation has a significant role in induce of Multiple sclerosis (MS) many approaches have been used to treat MS, but none of these methods have not been able to fully improve. One of the methods can suppress inflammation and regenerate the nervous system is the use of cell therapy. Using cell therapy in pre-clinic phase can be realized, it's mechanism and potency to suppress neuroinfla...

متن کامل

The Role of Stem Cell Therapy in Multiple Sclerosis: an Overview of the Current Status of the Clinical Studies

The complexity of multiple sclerosis (MS) and the incompetence of a large number of promise treatments in MS urge us to plan new and more effective therapeutic approaches that aim to suppress ongoing autoimmune responses and induction of local endogenous regeneration. Emerging data propose that hematopoietic, mesenchymal and neural stem cells have the potential to restore self-tolerance, to pro...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium

The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012